### 氧化還原滴定

目的 明白氧化還原定義以及當量滴定原理

原理 氧化通常指一原子或離子的氧化狀態(或原子價)增加,亦即失去電子;還原則是指氧化狀態減少,亦即獲得電子;氧化還原反應因此又稱為電子轉移反應。在一個氧化還原反應中,如果其中一反應物被氧化,則另一反應物必須被還原。

許多元素,特別是過渡金屬元素,可以呈現多重氧化狀態,以錳為例,可有 2+,3+,4+,6+及 7+ 五種氧化狀態,其中 6+及 3+在水溶液中很不穩定。高錳酸根離子,MnO<sub>4</sub>,為一強氧化劑,很容易氧化其他反應物,亦即本身容易被還原。

在本實驗,學生將從配製高錳酸根離子的酸性溶液開始,用已知量的草酸鈉, $Na_2C_2O_4$ ,標定其濃度,然後以此高錳酸鉀溶液當做標準液,用以分析未知物的草酸根含量,高錳酸鉀與草酸鈉在硫酸溶液中的反應為

$$2KMnO_4(aq) + 5Na_2C_2O_4(aq) + 8H_2SO_4(aq) \rightarrow$$

$$2MnSO_4(aq) + 10CO_2(g) + 8H_2O(l) + 5Na_2SO_4(aq) + K_2SO_4(aq)$$
 (6.1)

或以離子方程式表示

$$2MnO_4^{-}(aq) + 5C_2O_4^{-2}(aq) + 16H^{+}(aq) \rightarrow$$

$$2Mn^{2+}(aq) + 10CO_2(g) + 8H_2O(l)$$
(6.2)

在此反應裡,Mn(VII)被還原為 Mn(II),而 C(III)被氧化為 C(IV)。在氧化還原反應裡,並非反應物中所有的原子都進行氧化還原,事實上僅是少數原子參與反應,這些原子我們稱之為 "氧化還原原子"。反應物的當量(緒論 4-2),為其分子量除以所含氧化還原原子氧化狀態的改變數,一當量反應物的質量同時含有一當量氧化還原原子的質量。以反應(6.1)為例,Mn 為 KMnO4 的氧化還原原子,Mn 的氧化狀態由 7+(KMnO4)減為 2+(MnSO4),改變數為 5(或失去 5 個電子),因此一當量 KMnO4 等於分子量除以 5,亦即 158.04/5=31.61 克。溶液的當量濃度(緒論 4-3)為一升溶液中,反應物的質量除以當量,因此 0.1000N KMnO4 溶液,即在 1000mL 溶液中,含有 0.1000 × 31.61=3.161 克之 KMnO4。

在稀溶液中,MnO4<sup>-</sup> 呈粉紅色,而 Mn<sup>2+</sup> 則為無色,因此在滴定過程

#### 普通化學實驗

中, $MnO_4$  本身就是很好的指示劑。以  $MnO_4$  滴定  $C_2O_4$  ,當  $MnO_4$  滴  $C_2O_4$  溶液時,所有  $MnO_4$  都被還原成  $Mn^{2+}$  ,溶液維持無色直至所有  $C_2O_4$  及應完全,此時下一滴  $MnO_4$  將成為過量,而使溶液變成粉紅色,表示已達滴定終點。

 $MnO_4$ - $C_2O_4$ 2-之氧化還原反應在室溫下進行相當緩慢,因此在滴定前, $C_2O_4$ 2-溶液需先加熱至  $80^{\circ}$ C左右,以確定在滴定過程,反應已達平衡狀態,即使在高溫情況,反應開始時(開始滴定),仍進行緩慢,所幸生成之  $Mn^{2+}$  產物具有催化現象,且反應速率隨  $Mn^{2+}$  之增加而加快。任何反應可藉所形成之產物進行催化的現象,稱之為自身催化。

器材 500mL 燒杯,250mL 燒杯,50mL 滴定管(使用方法參閱緒論6-3),蝴蝶夾, 網狀玻璃漏斗,錶玻璃,攪拌器,磁石,量筒,溫度計,本生燈,天平, 烘箱

藥品 0.1 N KMnO<sub>4</sub> , Na<sub>2</sub>C<sub>2</sub>O<sub>4</sub> (solid) , 3M H<sub>2</sub>SO<sub>4</sub> , 含 C<sub>2</sub>O<sub>4</sub><sup>2-</sup> 之未知樣品

#### 實驗步驟

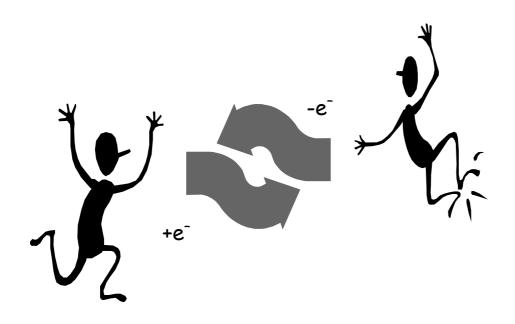
### A. 高錳酸鉀溶液的配製(助教預備)

- 1. 配 150mL 0.1N KMnO<sub>4</sub> 水溶液於一燒杯內。
- 2. 用錶玻璃蓋上燒杯,加熱至沸騰,以慢火維持沸騰5分鐘。
- 3. 溶液冷卻至可以用手拿時,立即以網狀玻璃漏斗過濾至一褐色乾淨有玻璃蓋之瓶子。
- 註:(a) 以上步驟乃為除去高錳酸鉀內的二氧化錳雜質, MnO<sub>2</sub>為深褐色固體, 不易溶於水,但會還原高錳酸根離子溶液,而影響滴定的準確性。
  - (b) 由於有機物會還原高錳酸根離子,因此步驟3避免使用濾紙過濾。

#### B. MnO<sub>4</sub> 溶液確實濃度之標定

- 1. 取約 1g 的草酸鈉置於錶玻璃,在 105℃烘箱裡乾燥約 30 分鐘,再倒回原來的秤瓶。(助教預備)
- 2. 在-250mL 燒杯內,精秤約 0.10 g 且大於 0.10 g 乾燥過的  $Na_2C_2O_4$ ,確定 定 療杯做上記號以便辨認。
- 3. 加入 20mL 水以溶解 Na<sub>2</sub>C<sub>2</sub>O<sub>4</sub>,再徐徐加入 2.0mL 18M H<sub>2</sub>SO<sub>4</sub> 酸化, 攪

拌均勻,將所得溶液加熱至  $80^{\circ}$  (不可超過  $90^{\circ}$  ),立即以  $MnO_4$  溶液滴定,並用玻棒(或攪拌器)小心攪拌,記錄達滴定終點(淡淡的粉紅色,至少持續 15 秒)時, $KMnO_4$ 溶液所需的體積。隨時注意溶液溫度,使溶液溫度保持在  $60 \sim 80^{\circ}$  、必要時可再加熱。


4. 重覆步驟 B.2~B.3 一次。

#### C. 草酸根的分析

- 1. 準確秤取事先乾燥過的未知樣品約  $0.10 \sim 0.20~g$  (記下未知編號) 於一 250~mL 燒杯,標以記號,重覆步驟  $B.3 \circ$
- 2. 重覆步驟 C.1 一次。
- 3. 計算未知樣品之  $C_2O_4^{2-}$  重量及所佔重量百分比。準確度的要求由指導老師決定。

#### 注意事項:

- 1. 剩餘未滴定過的 0.1 N KMnO₄溶液(包括滴定管內的), 要倒入助教預備的回收瓶。
- 2. 廢液(磁石先取出)請倒入廢液筒。
- 3. 滴定管的水栓開關請拆下,浸泡草酸溶液以洗淨污漬後,並依序(薄墊片→橡皮圈→旋紐)裝回,經助教檢查後,放回滴定管架。



## 實驗六 氧化還原滴定

## 實驗前問題

| 學系 | 學號 | LL A | 組別               | 日期 |  |
|----|----|------|------------------|----|--|
| 字系 | 字號 | 姓名   | 3 <u>1</u> 1 / 1 | 口织 |  |

1. 欲配製 0.450 N KMnO<sub>4</sub> 溶液 0.600 L 需高錳酸鉀多少克?

- 2. 一溶液含 0.310 克的未知草酸鹽,以  $0.150\,N\,KMnO_4$  滴定,需 15.33mL 方達 終點。
  - (a) 計算樣品中草酸根(C<sub>2</sub>O<sub>4</sub><sup>2-</sup>)的莫耳數。
  - (b) 計算樣品中草酸根 $(C_2O_4^{2-})$ 的重量百分比。

## 實驗六 氧化還原滴定

## 實驗報告

| 學系 | 學號 | 姓名 | 組別 | 日期 |  |
|----|----|----|----|----|--|
|----|----|----|----|----|--|

結果 (網底之空格為實驗觀察或記錄之數據,其餘則填入計算數據)

B.  $MnO_4$  溶液確實濃度之標定 (標定  $KMnO_4$ , 求  $N_{KMnO_4}$  = ?)

| 測定次數                                                  | 1 | 2 |
|-------------------------------------------------------|---|---|
| Na <sub>2</sub> C <sub>2</sub> O <sub>4</sub> 精確質量(g) |   |   |
| KMnO <sub>4</sub> 滴定初讀數(mL)                           |   |   |
| KMnO <sub>4</sub> 滴定末讀數(mL)                           |   |   |
| KMnO <sub>4</sub> 用去體積(mL)                            |   |   |
| KMnO4確實濃度(N)                                          |   |   |
| KMnO <sub>4</sub> 平均濃度(N)                             |   |   |

公式:

 $Na_2C_2O_4$ 的當量數=  $KMnO_4$ 的當量數

$$\frac{W_{t}(Na_{2}C_{2}O_{4})}{134/2} = N_{KMnO_{4}} \times V_{KMnO_{4}}(L)$$

計算:

# C.草酸根的分析 (滴定未知,求 $W_t$ % of $C_2O_4^{2-}$ =?)

未知編號:\_\_\_\_\_號

| 測定次數                        | 1 | 2 |
|-----------------------------|---|---|
| 未知樣品精確質量 (g)                |   |   |
| KMnO <sub>4</sub> 滴定初讀數(mL) |   |   |
| KMnO <sub>4</sub> 滴定末讀數(mL) |   |   |
| KMnO <sub>4</sub> 用去體積(mL)  |   |   |
| 樣品中含草酸根重量百分比(%)             |   |   |
| 平均重量百分比(%)                  |   |   |

### 公式:

$$KMnO_4$$
的當量數= $C_2O_4^2$ 的當量數

$$N_{\text{KMnO4}} \times V_{\text{KMnO4}}(L) = \frac{W_t(C_2O_4^{2^{-}})}{88/2}$$

∴ Wt% (C<sub>2</sub>O<sub>4</sub><sup>2-</sup>) = 
$$\frac{N_{\text{KMnO}_4} \times V_{\text{KMnO}_4}(L) \times \frac{88}{2}}{\text{Wt (unknown)}} \times 100\%$$

計算:

 草酸在濃硫酸中會逐漸分解: H<sub>2</sub>C<sub>2</sub>O<sub>4</sub>(aq) → H<sub>2</sub>O(l) + CO(g) + CO<sub>2</sub>(g), 在稀硫酸中此分解反應會較為緩慢,但長時間時仍不能忽略。假若在 B 部份實驗裡,草酸根離子酸化後放置很久才開始滴定,則實驗會產生何 種影響? (與立刻進行滴定者作比較!)

註:假設 MnO4 不會氧化 CO。

|         | 實驗                 | 結  | 果           | 增加,減少<br>或不變 | 理 | 由 |
|---------|--------------------|----|-------------|--------------|---|---|
| (a) Mno | D <sub>4</sub> ¯溶液 | 所需 | 的體積         |              |   |   |
| (b) 求得  | $MnO_4$            | 溶液 | 的當量濃度       |              |   |   |
|         | 樣品之立<br>比(C部)      |    | 根離子重量<br>驗) |              |   |   |

2. 請就下列不同的實驗條件預測,在決定未知樣品的草酸根離子重量百分比時,所可能導致的影響(與正確操作條件作比較)。

|                        | 未知樣品的草  |    |
|------------------------|---------|----|
|                        | 酸根離子重量  |    |
| 實驗條件                   | 百分比(增加, | 理由 |
|                        |         |    |
| / \                    | 減少或不變)  |    |
| (a) 標定前用濾紙過濾高錳         |         |    |
| 酸根離子溶液                 |         |    |
| (b) 標定後的高錳酸根離子         |         |    |
| 溶液被有機物污染               |         |    |
| (c) 未知樣品溶液滴定速率         |         |    |
| 緩慢                     |         |    |
| (d) 未知樣品溶液在低於 60       |         |    |
| ℃溫度下滴定                 |         |    |
| (e) 為了避免草酸根離子被         |         |    |
| 硫酸氧化,改用 HCl 酸          |         |    |
| 化溶液                    |         |    |
| (f) 為了避免草酸根離子被         |         |    |
| 硫酸氧化,改用 HNO3酸          |         |    |
| 化溶液                    |         |    |
| (g) 滴定終點時,反應尚未達        |         |    |
| 平衡                     |         |    |
| (h) 未知樣品溶液未經酸化         |         |    |
| (i) 在配製高錳酸根離子溶         |         |    |
| 液時,過濾前蒸餾水內含            |         |    |
| 有有機物質                  |         |    |
| (j) 未知樣品溶液中加入          |         |    |
| Mn <sup>2+</sup> 以催化反應 |         |    |
| (k) 貯存過的高錳酸根離子         |         |    |
| 溶液瓶底出現一層褐色             |         |    |
| 沉澱                     |         |    |

3. 有一學生在標定高錳酸鉀溶液時,所得高錳酸鉀溶液濃度分別為 0.2798 N,0.2803 N 及 0.2766 N。(緒論 5-1,5-2) 請完成下列表格(列出計算過程), 設正確值為 0.2793 N。

| 15                       | 數據1    | 數據2    | 數據3    |
|--------------------------|--------|--------|--------|
| 數據                       | 0.2798 | 0.2803 | 0.2766 |
| 平均值                      |        |        |        |
| 偏差(deviation)            |        |        |        |
| 平均偏差<br>(a.d)            |        |        |        |
| 相對平均偏差<br>(r.a.d)        |        |        |        |
| 標準偏差<br>(s.d)            |        |        |        |
| 正確值                      |        | 0.2793 |        |
| 絕對誤差<br>(absolute error) |        |        |        |
| 相對誤差<br>(relative error) |        |        |        |