

基本資料:

元素符號	中文	英文	原子序	原子量
Og	鲄	Oganesson	118	294
電子組態	氧化價	熔點	沸點	電負度
[Rn] 7s ² 7p ⁶ 5f ¹⁴ 6d ¹⁰	+6 ~ -1	N/A	80±30 °C	N/A

歷史:

2016 年 11 月 28 日·118 號元素被命名為 Oganesson·符號為(Og)。該名稱是由杜布納核研究所(俄羅斯)和勞倫斯利弗莫爾國家實驗室(美國)提出的。該獎項旨在表彰 Yuri Oganessian 教授(生於 1933 年)對反式錒素元素研究的開創性貢獻。

來源:

■是一種放射性極強、極為不穩定的超重元素,所有同位素的半衰期都極短, 其當前唯一的已知同位素為 ²⁹⁴Og , 半衰期僅 0.69 毫秒。■不存在於自然界 中,只能在實驗室內以粒子加速器人工合成。自 2005 年起,科學家只成功合成 出五個(亦可能為六個)■-294 原子。

特性:

型的物理和化學性質和同族其他元素相近,特別是和週期表上位於它以上的氦類似。單從元素週期規律推斷,型的反應性會比氦稍高。然而,理論計算卻指出,型的反應性會比氦高得多。除此之外,型甚至有可能比鈇和鎶更加活躍,後二者在週期表上位於反應性更高的鉛和汞之下。型反應性之所以會有大大提升,是因為其最後一個充滿的 7p 亞電子殼層從能量考量上穩定性降低,且亞殼層有徑向擴張的現象。更準確地說,7p 電子和惰性 7s 電子之間強大的自旋-軌道作用使得價電子殼層到了鈇就已閉合,型的閉合殼層的穩定性故此會大大降低。計算還顯示,和其他惰性氣體不同,型在結合一個電子時會釋放能量,也就是說,它的電子親和能為正數。這是因為在相對論效應下,8s 能級的穩定性會提高,7p3/2 能級的穩定性則會降低。根據預測,鎶和鈇沒有電子親和性。但另一方面,量子電動力學效應卻會大大降低這種親和性。這意味著,此類效應所帶來的修正項對超重元素的性質有很大的影響。

參考資訊:

- 1. https://periodic.lanl.gov/list.shtml
- 2. https://ptable.com/?lang=zh-hant#%E6%80%A7%E8%B3%AA
- 3. http://www.chwa.com.tw/his/test/chemistry/48072/PeriodicTable/Index.html
- 4. https://chemistry.org.tw/ 中國化學會
- 5. https://zh.wikipedia.org/zhtw/%E5%85%83%E7%B4%A0%E5%91%A8%E6%9C%9 fwe88%A1%A8 維基百科